Wednesday, November 18, 2015

p. 609: 1, 4, 6, 7, 11, 15, 24, 30, 33, 34, 55, 56

Problem 1

Problem. Confirm that the Integral Test can be applied to the series $\sum_{n=1}^{\infty} \frac{1}{n+3}$. Then use the Integral Test to determine the convergence or divergence of the series. Solution. Let $f(x) = \frac{1}{x+3}$. On the interval $[1, \infty)$, f(x) is positive, continuous, and decreasing (all obvious), so the Integral Test applies.

$$\int_{1}^{\infty} \frac{1}{x+3} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x+3} dx$$
$$= \lim_{t \to \infty} [\ln |x+3|]_{1}^{t}$$
$$= \lim_{t \to \infty} (\ln (t+3) - \ln 4)$$
$$= \infty.$$

Therefore, $\sum_{n=1}^{\infty} \frac{1}{n+3}$ diverges.

Problem 4

Problem. Confirm that the Integral Test can be applied to the series $\sum_{n=1}^{\infty} 3^{-n}$. Then use the Integral Test to determine the convergence or divergence of the series. Solution. Let $f(x) = 3^{-x}$. On the interval $[1, \infty)$, f(x) is positive, continuous, and decreasing (all obvious), so the Integral Test applies.

$$\int_{1}^{\infty} 3^{-x} dx = \lim_{t \to \infty} \int_{1}^{t} 3^{-x} dx$$
$$= \lim_{t \to \infty} \left[-\frac{3^{-x}}{\ln 3} \right]_{1}^{t}$$
$$= \lim_{t \to \infty} \left(-\frac{3^{-t}}{\ln 3} + \frac{3^{-1}}{\ln 3} \right)$$
$$= \frac{1}{3 \ln 3}.$$

Therefore, $\sum_{n=1}^{\infty} 3^{-n}$ converges.

Problem 6

Problem. Confirm that the Integral Test can be applied to the series $\sum_{n=1}^{\infty} ne^{-n/2}$. Then use the Integral Test to determine the convergence or divergence of the series. Solution. Let $f(x) = xe^{-x/2}$. Then f(x) is positive and continuous on $[1, \infty)$, but it is not clear that it is decreasing. We need to show that.

$$f'(x) = e^{-x/2} + xe^{-x/2} \cdot \left(-\frac{1}{2}\right)$$
$$= e^{-x/2} \left(1 - \frac{x}{2}\right).$$

From that it is clear that f(x) is decreasing on $[2, \infty)$, which is good enough, so the Integral Test applies.

$$\int_{1}^{\infty} x e^{-x/2} \, dx = \lim_{t \to \infty} \int_{1}^{t} x e^{-x/2} \, dx.$$

Now we need integration by parts. Let u = x and $dv = e^{-x/2} dx$. Then du = dx and $v = -2e^{-x/2}$.

$$\lim_{t \to \infty} \int_{1}^{t} x e^{-x/2} dx = \lim_{t \to \infty} \left(\left[-2x e^{-x/2} \right]_{1}^{t} + 2 \int_{1}^{t} e^{-x/2} dx \right)$$
$$= \lim_{t \to \infty} \left(\left(-2t e^{-t/2} + 2e^{-1/2} \right) - 4 \left[e^{-x/2} \right]_{1}^{t} \right)$$
$$= \lim_{t \to \infty} \left(\left(-2t e^{-t/2} + 2e^{-1/2} \right) - 4 \left(e^{-t/2} - e^{-1/2} \right) \right).$$

The term $e^{-t/2}$ goes to 0. We need L'Hôpital's Rule to evaluate $\lim_{t\to\infty} (-2te^{-t/2})$.

$$\lim_{t \to \infty} -2te^{-t/2} = \lim_{t \to \infty} \frac{-2t}{e^{t/2}}$$
$$= \lim_{t \to \infty} \frac{-2}{\frac{1}{2}e^{t/2}}$$
$$= 0.$$

Therefore,
$$\int_{1}^{\infty} x e^{-x/2} dx = 6e^{-1/2}$$
 and therefore, $\sum_{n=1}^{\infty} n e^{-n/2}$ converges.

Problem 7

Problem. Confirm that the Integral Test can be applied to the series

$$\frac{1}{2} + \frac{1}{5} + \frac{1}{10} + \frac{1}{17} + \frac{1}{26} + \cdots$$

Then use the Integral Test to determine the convergence or divergence of the series.

Solution. The denominators appear to be terms in the sequence $n^2 + 1$. So the series is $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$. Let $f(x) = \frac{1}{x^2 + 1}$. It is continuous, decreasing, and positive on $[1, \infty)$. $\int_{1}^{\infty} \frac{1}{x^2 + 1} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^2 + 1} dx$ $= \lim_{t \to \infty} [\arctan x]_{1}^{t}$ $= \lim_{t \to \infty} (\arctan t - \arctan 1)$ $= \frac{\pi}{2} - \frac{\pi}{4}$ $= \frac{\pi}{4}.$ Therefore, $\sum_{i=1}^{\infty} \frac{1}{n^2 + 1}$ converges.

Problem 11

Problem. Confirm that the Integral Test can be applied to the series

$$\frac{1}{\sqrt{1}(\sqrt{1}+1)} + \frac{1}{\sqrt{2}(\sqrt{2}+1)} + \frac{1}{\sqrt{3}(\sqrt{3}+1)} + \dots + \frac{1}{\sqrt{n}(\sqrt{n}+1)} + \dots$$

Then use the Integral Test to determine the convergence or divergence of the series. Solution. Let $f(x) = \frac{1}{\sqrt{x}(\sqrt{x}+1)}$. Clearly, f(x) is continuous, positive, and decreasing on $[1, \infty)$. To find the integral $\int_{1}^{\infty} \frac{1}{\sqrt{x}(\sqrt{x}+1)} dx$, we need to make the

substitution
$$u = \sqrt{x}$$
, $du = \frac{1}{2\sqrt{x}} dx$.

$$\int_{1}^{\infty} \frac{1}{\sqrt{x}(\sqrt{x}+1)} dx = 2 \int_{1}^{\infty} \frac{1}{u+1} du$$

$$= 2 \lim_{t \to \infty} \int_{1}^{t} \frac{1}{u+1} du$$

$$= 2 \lim_{t \to \infty} [\ln |u+1|]_{1}^{t}$$

$$= 2 \lim_{t \to \infty} (\ln |t+1| - \ln 2)$$

$$= \infty.$$

Therefore, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}(\sqrt{n}+1)}$ diverges.

Problem 15

Problem. Confirm that the Integral Test can be applied to the series $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$. Then use the Integral Test to determine the convergence or divergence of the series. Solution. Let $f(x) = \frac{\ln x}{x^2}$. Clearly, f(x) is positive and continuous on $[1, \infty)$. We need to show that it is decreasing.

$$f'(x) = \frac{x^2 \cdot \frac{1}{x} - 2x \cdot \ln x}{x^4} \\ = \frac{1 - 2\ln x}{x^3}.$$

This is negative when $2 \ln x > 1$, which is when $x > e^{1/2}$, which is good enough. So the Integral Test applies.

To integrate $\frac{\ln x}{x^2}$, we need to use integration by parts. Let $u = \ln x$ and $dv = x^{-2} dx$. Then $du = x^{-1} dx$ and $v = -x^{-1}$.

$$\int_{1}^{\infty} \frac{\ln x}{x^2} dx = \lim_{t \to \infty} \left(\left[-\frac{\ln x}{x} \right]_{1}^{t} - \int_{1}^{t} x^{-2} dx \right)$$
$$= \lim_{t \to \infty} \left(\left(-\frac{\ln t}{t} \right) - \left[-x^{-1} \right]_{1}^{t} \right)$$
$$= \lim_{t \to \infty} \left(\left(-\frac{\ln t}{t} \right) - \left(-\frac{1}{t} + 1 \right) \right)$$

L'Hôpital's Rule shows that $\lim_{t\to\infty} \frac{\ln t}{t} = 0$, so $\int_1^\infty \frac{\ln x}{x^2} dx = 1$. Therefore, $\sum_{n=1}^\infty \frac{\ln n}{n^2}$ converges.

Problem 24

Problem. Use the Integral Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} n^k e^{-n}$, where k is a positive integer.

Solution. Refer to Exercise 103 on page 575 (homework from 11/11/15). That exercise established that

$$\int_0^\infty x^{n-1} e^{-x} \, dx = n!.$$

It follows that the integral $\int_{1}^{\infty} x^{n-1}e^{-x} dx$ is finite and therefore converges. Therefore, $\sum_{n=1}^{\infty} n^{k}e^{-n}$ converges.

Problem 30

Problem. Use the Integral Test to determine the convergence or divergence of the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$.

Solution. Let $f(x) = \frac{1}{x^{1/2}}$.

$$\int_{1}^{\infty} \frac{1}{x^{1/2}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{1/2}} dx$$
$$= \lim_{t \to \infty} \left[2x^{1/2} \right]_{1}^{t}$$
$$= \lim_{t \to \infty} \left(2\sqrt{t} - 2 \right)$$
$$= \infty.$$

Therefore, $\sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$ diverges.

Problem 33

Problem. Use Theorem 9.11 to determine the convergence or divergence of the *p*-series $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}}.$

Solution. The exponent is $p = \frac{1}{5} < 1$, therefore, $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}}$ diverges.

Problem 34

Problem. Use Theorem 9.11 to determine the convergence or divergence of the *p*-series $\sum_{n=1}^{\infty} \frac{3}{n^{5/3}}.$

Solution. The exponent is $p = \frac{5}{3} > 1$, therefore, $\sum_{n=1}^{\infty} \frac{3}{n^{5/3}}$ converges. The 3 in the numerator does not matter.

Problem 55

Problem. Use the result of Exercise 53 to approximate the sum of the convergent series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ using five terms. Include an estimate of the maximum error for your approximation.

Solution. The sum of the first 5 terms is

$$\sum_{n=1}^{5} \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2}$$
$$= 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25}$$
$$= \frac{5269}{3600}$$
$$= 1.4636111 \dots$$

According to Exercise 53, the remainder R_5 is no greater than

$$\int_{5}^{\infty} \frac{1}{x^2} dx = \lim_{t \to \infty} \int_{5}^{t} \frac{1}{x^2} dx$$
$$= \lim_{t \to \infty} \left[-\frac{1}{x} \right]_{5}^{t}$$
$$= \lim_{t \to \infty} \left(-\frac{1}{t} + \frac{1}{5} \right)$$
$$= \frac{1}{5}$$
$$= 0.2.$$

Thus,

$$1.4636111\ldots \le \sum_{n=1}^{\infty} \frac{1}{n^2} \le 1.6636111\ldots$$

Problem 56

Problem. Use the result of Exercise 53 to approximate the sum of the convergent series $\sum_{n=1}^{\infty} \frac{1}{n^5}$ using six terms. Include an estimate of the maximum error for your approximation.

Solution. The sum of the first 6 terms is

$$\sum_{n=1}^{6} \frac{1}{n^5} = \frac{1}{1^5} + \frac{1}{2^5} + \frac{1}{3^5} + \frac{1}{4^5} + \frac{1}{5^5} + \frac{1}{6^5}$$
$$= 1 + \frac{1}{32} + \frac{1}{243} + \frac{1}{1024} + \frac{1}{3125} + \frac{1}{7776}$$
$$= 1.03679039\dots$$

According to Exercise 53, the remainder R_6 is no greater than

$$\int_{6}^{\infty} \frac{1}{x^{5}} dx = \lim_{t \to \infty} \int_{6}^{t} \frac{1}{x^{5}} dx$$
$$= \lim_{t \to \infty} \left[-\frac{1}{4x^{4}} \right]_{6}^{t}$$
$$= \lim_{t \to \infty} \left(-\frac{1}{4t^{4}} + \frac{1}{4 \cdot 6^{4}} \right)$$
$$= \frac{1}{5184}$$
$$= 0.1929012346....$$

Thus,

$$1.03679039\ldots \le \sum_{n=1}^{\infty} \frac{1}{n^5} \le 1.036983291\ldots$$