Wednesday, November 18, 2015

p. 609: $1,4,6,7,11,15,24,30,33,34,55,56$

Problem 1

Problem. Confirm that the Integral Test can be applied to the series $\sum_{n=1}^{\infty} \frac{1}{n+3}$. Then use the Integral Test to determine the convergence or divergence of the series. Solution. Let $f(x)=\frac{1}{x+3}$. On the interval $[1, \infty), f(x)$ is positive, continuous, and decreasing (all obvious), so the Integral Test applies.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x+3} d x & =\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x+3} d x \\
& =\lim _{t \rightarrow \infty}[\ln |x+3|]_{1}^{t} \\
& =\lim _{t \rightarrow \infty}(\ln (t+3)-\ln 4) \\
& =\infty
\end{aligned}
$$

Therefore, $\sum_{n=1}^{\infty} \frac{1}{n+3}$ diverges.

Problem 4

Problem. Confirm that the Integral Test can be applied to the series $\sum_{n=1}^{\infty} 3^{-n}$. Then use the Integral Test to determine the convergence or divergence of the series.
Solution. Let $f(x)=3^{-x}$. On the interval $[1, \infty), f(x)$ is positive, continuous, and decreasing (all obvious), so the Integral Test applies.

$$
\begin{aligned}
\int_{1}^{\infty} 3^{-x} d x & =\lim _{t \rightarrow \infty} \int_{1}^{t} 3^{-x} d x \\
& =\lim _{t \rightarrow \infty}\left[-\frac{3^{-x}}{\ln 3}\right]_{1}^{t} \\
& =\lim _{t \rightarrow \infty}\left(-\frac{3^{-t}}{\ln 3}+\frac{3^{-1}}{\ln 3}\right) \\
& =\frac{1}{3 \ln 3}
\end{aligned}
$$

Therefore, $\sum_{n=1}^{\infty} 3^{-n}$ converges.

Problem 6

Problem. Confirm that the Integral Test can be applied to the series $\sum_{n=1}^{\infty} n e^{-n / 2}$. Then use the Integral Test to determine the convergence or divergence of the series.

Solution. Let $f(x)=x e^{-x / 2}$. Then $f(x)$ is positive and continuous on $[1, \infty)$, but it is not clear that it is decreasing. We need to show that.

$$
\begin{aligned}
f^{\prime}(x) & =e^{-x / 2}+x e^{-x / 2} \cdot\left(-\frac{1}{2}\right) \\
& =e^{-x / 2}\left(1-\frac{x}{2}\right) .
\end{aligned}
$$

From that it is clear that $f(x)$ is decreasing on $[2, \infty)$, which is good enough, so the Integral Test applies.

$$
\int_{1}^{\infty} x e^{-x / 2} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} x e^{-x / 2} d x
$$

Now we need integration by parts. Let $u=x$ and $d v=e^{-x / 2} d x$. Then $d u=d x$ and $v=-2 e^{-x / 2}$.

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \int_{1}^{t} x e^{-x / 2} d x & =\lim _{t \rightarrow \infty}\left(\left[-2 x e^{-x / 2}\right]_{1}^{t}+2 \int_{1}^{t} e^{-x / 2} d x\right) \\
& =\lim _{t \rightarrow \infty}\left(\left(-2 t e^{-t / 2}+2 e^{-1 / 2}\right)-4\left[e^{-x / 2}\right]_{1}^{t}\right) \\
& =\lim _{t \rightarrow \infty}\left(\left(-2 t e^{-t / 2}+2 e^{-1 / 2}\right)-4\left(e^{-t / 2}-e^{-1 / 2}\right)\right)
\end{aligned}
$$

The term $e^{-t / 2}$ goes to 0 . We need L'Hôpital's Rule to evaluate $\lim _{t \rightarrow \infty}\left(-2 t e^{-t / 2}\right)$.

$$
\begin{aligned}
\lim _{t \rightarrow \infty}-2 t e^{-t / 2} & =\lim _{t \rightarrow \infty} \frac{-2 t}{e^{t / 2}} \\
& =\lim _{t \rightarrow \infty} \frac{-2}{\frac{1}{2} e^{t / 2}} \\
& =0
\end{aligned}
$$

Therefore, $\int_{1}^{\infty} x e^{-x / 2} d x=6 e^{-1 / 2}$ and therefore, $\sum_{n=1}^{\infty} n e^{-n / 2}$ converges.

Problem 7

Problem. Confirm that the Integral Test can be applied to the series

$$
\frac{1}{2}+\frac{1}{5}+\frac{1}{10}+\frac{1}{17}+\frac{1}{26}+\cdots
$$

Then use the Integral Test to determine the convergence or divergence of the series.
Solution. The denominators appear to be terms in the sequence $n^{2}+1$. So the series is $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$.

Let $f(x)=\frac{1}{x^{2}+1}$. It is continuous, decreasing, and positive on $[1, \infty)$.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x^{2}+1} d x & =\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{2}+1} d x \\
& =\lim _{t \rightarrow \infty}[\arctan x]_{1}^{t} \\
& =\lim _{t \rightarrow \infty}(\arctan t-\arctan 1) \\
& =\frac{\pi}{2}-\frac{\pi}{4} \\
& =\frac{\pi}{4}
\end{aligned}
$$

Therefore, $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$ converges.

Problem 11

Problem. Confirm that the Integral Test can be applied to the series

$$
\frac{1}{\sqrt{1}(\sqrt{1}+1)}+\frac{1}{\sqrt{2}(\sqrt{2}+1)}+\frac{1}{\sqrt{3}(\sqrt{3}+1)}+\cdots+\frac{1}{\sqrt{n}(\sqrt{n}+1)}+\cdots .
$$

Then use the Integral Test to determine the convergence or divergence of the series. Solution. Let $f(x)=\frac{1}{\sqrt{x}(\sqrt{x}+1)}$. Clearly, $f(x)$ is continuous, positive, and decreasing on $[1, \infty)$. To find the integral $\int_{1}^{\infty} \frac{1}{\sqrt{x}(\sqrt{x}+1)} d x$, we need to make the
substitution $u=\sqrt{x}, d u=\frac{1}{2 \sqrt{x}} d x$.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{\sqrt{x}(\sqrt{x}+1)} d x & =2 \int_{1}^{\infty} \frac{1}{u+1} d u \\
& =2 \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{u+1} d u \\
& =2 \lim _{t \rightarrow \infty}[\ln |u+1|]_{1}^{t} \\
& =2 \lim _{t \rightarrow \infty}(\ln |t+1|-\ln 2) \\
& =\infty
\end{aligned}
$$

Therefore, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}(\sqrt{n}+1)}$ diverges.

Problem 15

Problem. Confirm that the Integral Test can be applied to the series $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$. Then use the Integral Test to determine the convergence or divergence of the series.
Solution. Let $f(x)=\frac{\ln x}{x^{2}}$. Clearly, $f(x)$ is positive and continuous on $[1, \infty)$. We need to show that it is decreasing.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x^{2} \cdot \frac{1}{x}-2 x \cdot \ln x}{x^{4}} \\
& =\frac{1-2 \ln x}{x^{3}}
\end{aligned}
$$

This is negative when $2 \ln x>1$, which is when $x>e^{1 / 2}$, which is good enough. So the Integral Test applies.

To integrate $\frac{\ln x}{x^{2}}$, we need to use integration by parts. Let $u=\ln x$ and $d v=$ $x^{-2} d x$. Then $d u=x^{-1} d x$ and $v=-x^{-1}$.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x & =\lim _{t \rightarrow \infty}\left(\left[-\frac{\ln x}{x}\right]_{1}^{t}-\int_{1}^{t} x^{-2} d x\right) \\
& =\lim _{t \rightarrow \infty}\left(\left(-\frac{\ln t}{t}\right)-\left[-x^{-1}\right]_{1}^{t}\right) \\
& =\lim _{t \rightarrow \infty}\left(\left(-\frac{\ln t}{t}\right)-\left(-\frac{1}{t}+1\right)\right)
\end{aligned}
$$

L'Hôpital's Rule shows that $\lim _{t \rightarrow \infty} \frac{\ln t}{t}=0$, so $\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x=1$.
Therefore, $\sum_{n=1}^{\infty} \frac{\ln n}{n^{2}}$ converges.

Problem 24

Problem. Use the Integral Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} n^{k} e^{-n}$, where k is a positive integer.
Solution. Refer to Exercise 103 on page 575 (homework from 11/11/15). That exercise established that

$$
\int_{0}^{\infty} x^{n-1} e^{-x} d x=n!
$$

It follows that the integral $\int_{1}^{\infty} x^{n-1} e^{-x} d x$ is finite and therefore converges. Therefore, $\sum_{n=1}^{\infty} n^{k} e^{-n}$ converges.

Problem 30

Problem. Use the Integral Test to determine the convergence or divergence of the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$.
Solution. Let $f(x)=\frac{1}{x^{1 / 2}}$.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x^{1 / 2}} d x & =\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{1 / 2}} d x \\
& =\lim _{t \rightarrow \infty}\left[2 x^{1 / 2}\right]_{1}^{t} \\
& =\lim _{t \rightarrow \infty}(2 \sqrt{t}-2) \\
& =\infty
\end{aligned}
$$

Therefore, $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$ diverges.

Problem 33

Problem. Use Theorem 9.11 to determine the convergence or divergence of the p-series $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}}$.
Solution. The exponent is $p=\frac{1}{5}<1$, therefore, $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n}}$ diverges.
Problem 34
Problem. Use Theorem 9.11 to determine the convergence or divergence of the p-series $\sum_{n=1}^{\infty} \frac{3}{n^{5 / 3}}$.
Solution. The exponent is $p=\frac{5}{3}>1$, therefore, $\sum_{n=1}^{\infty} \frac{3}{n^{5 / 3}}$ converges. The 3 in the numerator does not matter.

Problem 55

Problem. Use the result of Exercise 53 to approximate the sum of the convergent series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ using five terms. Include an estimate of the maximum error for your approximation.

Solution. The sum of the first 5 terms is

$$
\begin{aligned}
\sum_{n=1}^{5} \frac{1}{n^{2}} & =\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}} \\
& =1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25} \\
& =\frac{5269}{3600} \\
& =1.4636111 \ldots
\end{aligned}
$$

According to Exercise 53, the remainder R_{5} is no greater than

$$
\begin{aligned}
\int_{5}^{\infty} \frac{1}{x^{2}} d x & =\lim _{t \rightarrow \infty} \int_{5}^{t} \frac{1}{x^{2}} d x \\
& =\lim _{t \rightarrow \infty}\left[-\frac{1}{x}\right]_{5}^{t} \\
& =\lim _{t \rightarrow \infty}\left(-\frac{1}{t}+\frac{1}{5}\right) \\
& =\frac{1}{5} \\
& =0.2
\end{aligned}
$$

Thus,

$$
1.4636111 \ldots \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}} \leq 1.6636111 \ldots
$$

Problem 56

Problem. Use the result of Exercise 53 to approximate the sum of the convergent series $\sum_{n=1}^{\infty} \frac{1}{n^{5}}$ using six terms. Include an estimate of the maximum error for your approximation.

Solution. The sum of the first 6 terms is

$$
\begin{aligned}
\sum_{n=1}^{6} \frac{1}{n^{5}} & =\frac{1}{1^{5}}+\frac{1}{2^{5}}+\frac{1}{3^{5}}+\frac{1}{4^{5}}+\frac{1}{5^{5}}+\frac{1}{6^{5}} \\
& =1+\frac{1}{32}+\frac{1}{243}+\frac{1}{1024}+\frac{1}{3125}+\frac{1}{7776} \\
& =1.03679039 \ldots
\end{aligned}
$$

According to Exercise 53, the remainder R_{6} is no greater than

$$
\begin{aligned}
\int_{6}^{\infty} \frac{1}{x^{5}} d x & =\lim _{t \rightarrow \infty} \int_{6}^{t} \frac{1}{x^{5}} d x \\
& =\lim _{t \rightarrow \infty}\left[-\frac{1}{4 x^{4}}\right]_{6}^{t} \\
& =\lim _{t \rightarrow \infty}\left(-\frac{1}{4 t^{4}}+\frac{1}{4 \cdot 6^{4}}\right) \\
& =\frac{1}{5184} \\
& =0.1929012346 \ldots
\end{aligned}
$$

Thus,

$$
1.03679039 \ldots \leq \sum_{n=1}^{\infty} \frac{1}{n^{5}} \leq 1.036983291 \ldots
$$

